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Abstract—Numerous researches on aerial transportation uses
the assumption that the payload is connected via a rigid rope.
Although this assumption makes sense in most situations, it will
still lose effectiveness occasionally. Therefore, this paper considers
the dynamics and control of a system with flexible rope. Based
on assumed mode method(AMM) and the assumption that the
length of the rope remains unchanged, the dynamic model of
this system is established by Euler-Lagrange techniques. Subse-
quently, through the energy-based analysis method, we design a
nonlinear anti-swing controller. Asymptotic results are obtained
with rigorous theoretical derivations provided by the Lyapunov-
based stability analysis and LaSalle’s invariance theorem. Two
groups of simulation results are provided to demonstrate the
superior performance of the proposed controller.

Index Terms—unmanned aerial vehicle(UAV), assumed mode
method(AMM), anti-swing control, flexible transportation

I. INTRODUCTION

In recent years, with the continuous development of me-
chanical, electronic and material technologies, the utilization
of quadrotor unmanned aerial vehicles(UAVs) has been greatly
promoted, including military, aerial photography, pesticide
spraying and so on. Due to the underactuation, nonlinearities
and the coupling behaviour between quadrotor’s outer loop and
inner loop, the control problem of quadrotor UAVs is a chal-
lenging issue. Many researches propose numerous advanced
methods [1]–[4] to deal with different control problems of
quadrotors.

An important application field of quadrotor UAVs is trans-
portation. There exists three main approaches, gripping by
grippers [5], manipulation by robotic arm [6]–[8], and sus-
pending by ropes [9]–[11]. In [5], by installing a gripper
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beneath the UAV, quadrotor can transport various objects.
The authors of [6] design a aerial manipulator with a 2-
DOF robotic arm. Then, an autonomous flight experiment
is conducted including picking up and delivering an object
with a corresponding adaptive sliding mode controller. In
[7], authors design a human-like dual arm aerial manipulator,
which could be used in transportation. In [8], authors use
model-based method to compensate the influence from robotic
arm’s motion. The designed controller achieves satisfactory
performance and successfully completes grasping and trans-
porting mission. However, the above methods are hard to
transport large cargoes flexibly because of their very limited
workspace. What’s more, both a gripper and a robotic arm
bring extra coupling, which increases the difficulty of accurate
control. In conclusion, just in terms of transporting mission,
suspending cargoes beneath the fuselage by a rope may be an
ideal way for cargo delivery.

Similar as underactuated overhead cranes [12], [13], the
quadrotor UAV transportation system is also underactuated.
Considering that the payload motion is totally caused by the
UAV’s translation and cannot be controlled directly, it is a
tough work to have quadrotor UAV reach a desired position
or track a desired trajectory accurately with the payload swing
being suppressed simultaneously. Up to now, researchers have
done a great deal of work on the control issue of quadrotor
UAV transportation. In [9], a nonlinear hierarchical control
scheme is proposed for a quadrotor transportation system,
whose closed-loop stability has been proven by the Lyapunov-
based stability analysis and LaSalle’s invariance theorem.
Besides, the proposed control law presents high control pre-
cision and effective payload swing suppression by experi-
mental verification. The authors of [10] propose an energy
coupling control law, which ensures the equilibrium point’s
asymptotic stability by utilizing Lyapunov techniques and
LaSalle’s invariance theorem. Experimental results showed the
superior performance, even in some adverse circumstances
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including external disturbances and parameter uncertainties.
[11] presents a pure proportional-inspired guidance law and
custom path-following control method for the delivery mission
of a slung payload, which enables the soft landing.

In many cases, the previous work make an assumption
that the rope is inelastic and massless. In most cases, this
assumption describes the transportation system accurately, but
the flexibility of the rope may appear in the cases of high
inertia ropes or large wind disturbance. There are very few
researches on the control issue of aerial flexible transportation
system. Farhad et al in [14], [15] model the payload as a
system of serially-connected links and analyze its dynamics.
Then, they ultilize a geometric nonlinear controller on it and
the overall closed-loop system is proven to be asymptotically
stable. The proposed controller’s performance is confirmed
by some numerical examples and preliminary experimental
results. Actually, this kind of analysis method is very similar to
double-pendulum transporting problem [16]. In the mathemat-
ical models built in [16], the flexibility of a rope is depending
on the number of virtual links. However, the difficulty of
analysis increases with the number of imaginary links.

Consequently, this paper considers another analysis method
for this kind of system with a flexible rope. Firstly, based
on the assumed mode method(AMM), the dynamic model is
built through the Lagrange’s modeling techniques. Then, we
design an energy-based controller, which can reach asymptotic
stability by Lyapunov techniques and LaSalle’s invariance
theorem.

The rest of this paper is organized as follows. Section
II introduces the total process of the model establishment,
including the introduction of AMM, the energy analysis part
and dimension reduction. Section III designs a nonlinear
controller through energy-based method and gives the corre-
sponding stability analysis. In Section IV, simulation tests are
performed. Section V is a conclusion of the whole article.

II. MODEL ESTABLISHMENT

The schematic of an aerial transportation system with a
flexible rope is shown in Fig. 1. Define ξ(t) =

[
y(t), z(t)

]>
as the position of the quadrotor UAV, θ as the roll angle of
the quadrotor UAV. M and m represent the mass of UAV
and the payload, respectively. ρ, l and S0 represent the length,
density and cross-sectional area of the flexible rope. Specially,
x represents the distance between each point of the flexible
rope to the tightened point in vertical direction, and xe is the
vertical distance of the rope’s end point. Define p(x, t) as the
rope offset function of x and t. Define q0 =

[
y, z, φ, xe

]>
as

the state vector of the system.
It is assume that the rope length keep unchanged. That is

χ =

∫ xe

0

√
1 +

∂p(x, t)

∂x
dx− l = 0. (1)

A. Energy Analysis
For the purpose of obtaining finite-dimensional dynamic

model, this part firstly introduces AMM [17], [18], which is

quadrotor

payload

y

z

φ
p(x, t)

xe

f

θ

Fig. 1. Aerial transportation system with a flexible rope

a method using the linear sum of assumed modes to describe
the vibration of an elastic body.

Assum p(x, t) equals to a model function ψ(x) timed by
the mode state φ(t), which is

p(x, t) = ψ(x)φ(t). (2)

Then choose the following function to describe deformation
of the rope:

ψ(x)=cosh
(τx
l

)
−cos

(τx
l

)
+µ
[

sin
(τx
l

)
−sinh

(τx
l

)]
,

(3)

where τ and µ and two positive constants.
Subsequently, Euler-Lagrange technique is applied to build

up dynamics of the system. The kinetic energy includes three
parts, including the motion of UAV, the oscillation of the
payload and the swing of the rope as follows:

K =
M

2
(ẏ2 + ż2) +

m

2
[(ẏ + ψ(xe)φ̇)2 + (ż − ẋe)2]

+
ρS0

2

∫ l

0

[(ẏ + ψ(x)φ̇)2 + ż2]dx. (4)

As for the potential energy, the gravitational potential energy
of UAV, the payload and the elastic potential energy of the rope
are included as

P = Mgz +mg(z − xe) +
EJ

2

∫ xe

0

(ψ
′′
φ)2

(1 + (ψ′φ)2)3
dx, (5)

where E and J are Young modulus and the rotational inertia.
Combining with the equation of invariable rope length (1),

a constrained lagrangian is finally obtained,

L = K − P + λχ. (6)

Taking (1), (4), (5) into (6) and substituting the result into
Euler-Lagrange equation yields

d

dt

( ∂L
∂q̇0

)
− ∂L

∂q0
= F , (7)
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where F is the generalized force. Based on the above analysis,
the dynamic equations of this aerial transportation system are
derived as follows:

M1ÿ +M2φ̈+A1ẋeφ̇ = uy, (8)
M1z̈ −mẍe +G1 = uz, (9)

mẍe −mz̈ −A1ẏφ̇−
1

2
A2φ̇

2 +G2 − λC2 = 0, (10)

M3φ̈+M2ÿ +A1ẏẋe +A2φ̇ẋe +G3 − λC1 = 0, (11)

where uy , uz stands for two control inputs, and

M1 = M +m+ ρS0l, M2 = mψ(xe) + ρS0

∫ l

0

ψ(x)dx,

M3 = mψ2(xe) + ρS0

∫ l

0

ψ2(x)dx,

G1 = (M +m)g, G2 =
EJ

2

φψ
′′
(xe)

2

(1 + (φψ′(xe))2)3
−mg,

G3 = φEJ

[∫ xe

0

ψ
′′2
dx

(1 + (φψ′′)2)3
− 3

∫ xe

0

(ψ
′
ψ

′′
)2dx

(1 + (φψ′′)2)4

]
,

C1 =

∫ xe

0

φ(ψ
′
)2√

(1 + (φψ′)2)
dx, C2 =

√
1 + (φψ(xe))2,

A1 = mψ
′
(xe), A2 = 2mψ(xe)ψ

′
(xe).

B. Reduce the Dimension of the System

Taking the time derivative of (1) yields

C1(φ, xe)φ̇+ C2(φ, xe)ẋe = 0. (12)

According to implicit function existence theorem, because C2

is positive and bounded, system state xe can be presented by
φ. Therefore, by reducing dimesions of the system, a new form
of dynamic model could be written as

M1ÿ +M2(x̂e)φ̈+Anφ̇
2 = uy, (13)

M1z̈ +Mmφ̈+Amφ̇
2 +G1 = uz, (14)

M2(x̂e)ÿ +Mmz̈ +Mpφ̈+Apφ̇
2 +Gp = 0, (15)

where

Mm = m
C1

C2
, Mp =

(
M3(x̂e) +m

C1
2

C2
2

)
,

Gp =
(
G3(x̂e)−

C1

C2
G2(x̂e)

)
,

An = A1(x̂e)
(
− C1

C2

)
, Am =

m

C2
Γ,

Ap = m
C1

C2
2 Γ− A2(x̂e)

2

C1

C2
,

Γ =
∂C1

∂φ
− C1

C2

(∂C1

∂xe
+
∂C2

∂φ

)
+
C1

2

C2
2

∂C2

∂xe
.

After rewritting the equation of dimension-reduced system dy-
namics, the state vector of the system becomes q =

[
ξ>, φ

]>
.

A compact form could be obtained as follows:

Mc(q)q̈ + Vc(q, q̇)q̇ +Gc(q) = U, (16)

where

Mc(q) =

 M1 0 M2(x̂e)
0 M1 Mm

M2(x̂e) Mm Mp

 ,
Vc(q, q̇) =

0 0 Anφ̇

0 0 Amφ̇

0 0 Apφ̇

 , Gc(q) =

 0
G1

Gp

 .
Two properties of the dynamic equation are given as follows:

Property 1: Ṁc(q̇)− 2Vc(q, q̇) is skew-symmetric.
Property 2: M2(x̂e) is positive and bounded.

III. CONTROLLER DEVELOPMENT AND STABILITY
ANALYSIS

Let ξd = [yd, zd]
> be the desired position of UAV. The

control objective is to drive the quadrotor to the desired
position, while eliminating the payload swing, which can be
quantified as follows:

lim
t→∞

ξ(t) = ξd, lim
t→∞

φ(t) = 0.

To facilitate subsequent controller development and analy-
sis, define the outer loop tracking errors ey(t) = y(t) − yd,
ez(t) = z(t)− zd.

A. Controller Development

The total mechanical energy of the outer loop subsystem
consists of both kinetic energy and potential energy as

Em =
1

2
q̇TM(q)q̇ +

EJ

2

∫ xe

0

(ψ
′′
φ)2

(1 + (ψ′φ)2)3
dx

+mg(l − xe). (17)

By using Property 1, taking the time derivative of Em yields

Ėm =
1

2
q̇T Ṁ(q)q̇ + q̇TM(q)q̈ + q̇T

∂P

∂q

=
1

2
q̇T Ṁ(q)q̇ + q̇T [U −Gc(q)− Vc(q, q̇)q̇] + φ̇Gp

= q̇TU − ż(M +m)g

= ẏuy + żuz − ż(M +m)g. (18)

Base on above analysis, choose a positive definite scalar
function as the Lyapunov candidate function

V (t) = Em +
kpy
2
e2y +

kpz
2
e2z. (19)

Taking the time derivative of V (t) leads to

V̇ (t) = Ėm + kpyey ėy + kpzez ėz

= ẏ(uy + kpyey) + ż[uz + kpzez − (M +m)g], (20)

with kpy, kpz ∈ R+ being positive control gains. According to
the form of (20), the control inputs are designed as follows:

uy = −kpyey − kdy ėy − kφyφ2ẏ, (21)

uz = −kpzez − kdz ėz − kφzφ2ż + (M +m)g, (22)

where kdy, kφy, kdz, kφz are all positive control gains.
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B. Stability Analysis

Theorem 1: The proposed controller uy and uz guarantee
that the quadrotor UAV is driven to the desired position while
the payload swing is damped out in the sense that

lim
t→∞

[y, ẏ, z, ż, φ, φ̇, p]> = [yd, 0, zd, 0, 0, 0, 0].> (23)

Proof: V (t) is a positive definite scalar function. Substi-
tuing the designed controller (21) and (22) into (20) yields

V̇ (t) = ẏ(uy + kpyey) + ż[uz + kpzez − (M +m)g],

= ẏ(−kdy ėy − kφyφ2ẏ) + ż(−kdz ėz − kφzφ2ż),
= −(kdy + kφyφ

2)ẏ2 − (kdz + kφzφ
2)ż2 ≤ 0. (24)

Therefore, the closed-loop system is Lyapunov stable at the
equilibrium point. V (t) is bounded because V (t) is positive
definite and V̇ (t) is semi-negative definite. Based on the forms
of V (t) and Em(t), it is obviously seen that

Em, ey, ez ∈ L∞ ⇒ y, ẏ, z, ż, φ, φ̇ ∈ L∞
⇒ uy, uz ∈ L∞. (25)

Then, define an invariant set Φ as

S =
{
y, ẏ, z, ż, φ, φ̇, p(x, t)

∣∣V̇ (t) = 0
}
.

According to the form of V̇ (t) in (24), one has that

ẏ = ż = 0, ÿ = z̈ = 0, ėy = ėz = 0. (26)

in this invariant set. Next, substituting the proposed controller
(21) and (22) into system dynamic model (13)–(15) leads to

M2(x̂e)φ̈+Anφ̇
2 = −kpyey, (27)

Mmφ̈+Amφ̇
2 = −kpzez, (28)

Mpφ̈+Apφ̇
2 = −Gp. (29)

Because it has been illustrated that Ṁ2(x̂e) = Anφ̇ in Property
1, equation (27) can be transformed into

d

dt

(
M2(x̂e)φ̇

)
= −kpyey. (30)

What’s more, it is obvious that ey keeps unchanged in this
invariant set by observing (26). Assuming that ey = c1 with
c1 being a constant, integrating (30) leads to

M2(x̂e)φ̇ = −kpyc1t+ c2. (31)

In this equation, c2 is another constant.
According to Property 2, M2(x̂e) is positive and bounded.

Besides, the boundness of φ is proven. It is easy to conclude
that c1 = 0, otherwise −kpyc1t → ∞ with t → ∞.
Consequently, in invariant set S, ey = c1 = 0, which means
that y = yd. With the conclusion that c1 = 0, equation (31)
could be transformed into

M2(x̂e)φ̇ = c2. (32)

If c2 > 0, φ̇ will be positive, which is to say that φ will keep
increasing. It is contradictory to the conclusion in (25). For the

same reason, c2 couldn’t be negative. In other word, c2 = 0.
Therefore, in invariant set S, φ̇ = 0 and φ̈ = 0.

Taking these two equations φ̇ = 0 and φ̈ = 0 into (28) and
(29) leads to

ez = 0, z = zd, Gp = 0. (33)

According to the form of Gp, φ and Gp share the same plus-
minus sign, so φ = 0 is the unique solution of Gp = 0. The
rope offset function p(x, t) = 0 as well. As a result, S only
contains the equilibrium point, i.e.

S =

{
y=yd, ẏ=0, z=zd, ż=0, φ=0, φ̇=0, p(x, t)=0

}
.

(34)

Eventually, based on the previous analysis, by invoking
LaSalle’s invariance theorem [19], the proof for the Theorem
1 is completed.

IV. SIMULATION RESULTS

This section will present simulation tests to evaluate the
performance of the proposed anti-swing controller. Two groups
of compared simulation results will be shown. The numerical
simulation is implemented on MATLAB/Simulink.

The system parameters are set as:

µ = 0.9049; τ = 1.1741; E = 2 N/m2;

J = 0.0048 kg ·m2; M = 1.7 kg; m = 0.7 kg;

l = 0.75 m; S0 = 1.77−6 m2; ρ = 1150 kg/m3.

A. Group 1

In this group of simulation, the initial position and desired
position of the quadrotor are set as follows:[

y0
z0

]
=

[
0 m
1 m

]
⇒
[
yd
zd

]
=

[
1 m

1.5 m

]
.

The PD controller gains are set as follows:

kpy = 3.1, kdy = 6, kpz = 1.5, kdz = 4.

And the proposed anti-swing controller gains are set as

kpy = 3.3, kdy = 6, kφy = 85, kpz = 1.5, kdz = 4, kφz = 49.

The simulation results are provided in Figs. 2–5. Fig. 2
and Fig. 3 show the position y(t), z(t) of the quadrotor UAV,
the swing angle φ(t) of the payload and the vertical distance
xe(t) between payload and UAV driven by PD and proposed
controllers, respectively. Fig. 4 and Fig. 5 show curves of
control inputs. It is seen that the proposed method could drive
the quadrotor to the desired position accurately and guarantee
payload swing suppressed, whose maximal amplitude is half
of the results driven by PD controller. The vertical distance
xe(t) in Fig. 2 and Fig. 3 is calculated according to the payload
swing angle φ, which has been stated in (12).
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Fig. 2. Results for PD controller in Group 1: UAV position y(t), z(t),
payload’s swing angle φ(t) and the distance between payload and UAV
in vertical direction xe(t)
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Fig. 3. Results for proposed controller in Group 1: UAV position y(t),
z(t), payload’s swing angle φ(t) and the distance between payload and
UAV in vertical direction xe(t)
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Fig. 4. Results for PD controller in Group 1: UAV’s control inputs
uy(t), uz(t)
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Fig. 5. Results for proposed controller in Group 1: UAV’s control inputs
uy(t), uz(t)

B. Group 2

In this group of simulation, the initial position and desired
position of the quadrotor are set as follows:[

y0
z0

]
=

[
0 m
2 m

]
⇒
[
yd
zd

]
=

[
3 m
1 m

]
.

The PD controller gains are set as follows:

kpy = 3.1, kdy = 6, kpz = 1.5, kdz = 4.

And the proposed anti-swing controller gains are set as

kpy = 3.2, kdy = 6, kφy = 10, kpz = 1.5, kdz = 4, kφz = 4.

Different from Group 1, this group simulates the situation
of descending process rather than ascenting process. All the
results are provided in Figs. 6–9. Due to the distance from the
initial point to the desired point is farther than that of Group 1
in horizontal direction, the resulting rope swing angle is larger
than that of Group 1. It can be also seen that the proposed
controller could suppress the payload swing more effectively.

V. CONCLUSION

By utilizing AMM, the swing motion of a flexible rope has
been modeled as the form of a model function timed by a
mode state, and then the dynamic model is built through the
Euler-Lagrange’s modeling techniques. Based on the resulting
dynamic model, an energy-based controller is proposed, and
the equilibrium point of the close-loop system is proven to be
asymptotically stable by Lyapunov techniques and LaSalle’s
invariance theorem. According to two groups of simulation
results, it can be validated that the proposed controller presents
superior performance in suppressing the payload swing.
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